U.G. 5th Semester Examination - 2020 MATHEMATICS

Course Code: BMTMCCHT 501

Course Title: Algebra-III

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

1. Answer any **ten** questions:

 $1 \times 10 = 10$

a) Find the correct answer:

The order of the quotient group $\mathbb{Z}/10\mathbb{Z}$ is—

i) 1

ii) 5

iii) 9

- iv) 10
- b) Consider the quotient group \mathbb{Q}/\mathbb{Z} of the additive group of rational numbers. Find the order of the element $\frac{2}{3} + \mathbb{Z}$ in \mathbb{Q}/\mathbb{Z} .
- c) Is A₃ a normal subgroup of S₃?

d) Find the correct answer:

The number of group homomorphisms from the cyclic group \mathbb{Z}_4 to the cyclic group \mathbb{Z}_7 is—

i) 4

ii) 7

iii) 1

- iv) 3
- e) Give an example of an infinite non-commutative group.
- f) Find the correct answer:

Let F be a field. Then the number of ideals of F is—

i) 0

ii) 1

iii) 2

- iv) infinite
- g) Consider the ideal $3\mathbb{Z}$ in the ring \mathbb{Z} . Is $3\mathbb{Z}$ a prime ideal of \mathbb{Z} ?
- h) Let F be a field. Find a maximal ideal of F.
- i) For a linear transformation $T: V \to W$, where V and W are vector spaces over the field F, show that T(x-y)=T(x)-T(y) for all $x, y \in V$.
- j) Let $T: \mathbb{R}^2(\mathbb{R}) \to \mathbb{R}^2(\mathbb{R})$ be defined by $T(a_1, a_2) = (a_1, -a_2)$ for all $(a_1, a_2) \in \mathbb{R}^2$. Is T linear? Justify.

- k) Does there exists any one-one linear map from \mathbb{R}^3 to \mathbb{R}^2 ?
- 1) Find the eigenvector(s) corresponding to the eigenvalue -1 of the matrix $\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$.
- m) State Cayley-Hamilton theorem for a square matrix.
- n) Find the associated matrix of the real quadratic form $x_1^2 x_2^2 + 2x_3^2$ in three variables x_1 , x_2 , x_3 .
- o) Prove that $\langle x, 0 \rangle = O$.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Suppose G be a group and a map $\phi: G \to G$ is defined by $\phi(x) = x^2$, $x \in G$. Prove that ϕ is a homomorphism if G is commutative.
 - b) Show that (Q, +) is not isomorphic to (Q^+, \cdot) .
 - c) Consider the direct product $\mathbb{Z} \times \mathbb{Z}$. Is it a cyclic group? Justify.
 - d) Why is the ideal $6\mathbb{Z}$ not a maximal ideal of \mathbb{Z} ?
 - e) Prove that the fields \mathbb{R} and \mathbb{C} are not isomorphic.

- Find two linear operators T and U on \mathbb{R}^2 s.t. TU=0 but $UT \neq 0$.
- g) If λ be an eigenvalue of a non-singular matrix A, then show that λ^{-1} is an eigenvalue of A^{-1} .
- h) Consider the matrix $A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$. Is A

diagonalisable?

- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) i) Let G be a group and let Z(G) be the center of G. If G/Z(G) is a cyclic group, prove that G is abelian.
 - ii) Show that if $\phi: R \to S$ is a ring homomorphism then Ker ϕ is an ideal of R. 3+2=5
 - b) i) Prove that a commutative ring with unity having no non-trivial proper ideals is a field.
 - ii) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation given by T(x, y) = (ax + by, cx + dy), $(x, y) \in \mathbb{R}^2$. If $ad - bc \neq 0$ then find the dimension of Ker T. 3+2=5

- c) i) Let V and W be two vector spaces over the field Q of rational numbers and let $T:V\to W$ be a function such that T(x+y)=T(x)+T(y) for all $x,y\in V$. Then show that T(cx)=ct(x) for all $c\in Q$ and $x\in V$.
 - symmetric matrix is either zero or purely imaginary. 3+2=5
- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Prove that in a commutative ring R with unity. An ideal I is a prime ideal if and only if the quotient ring R/I is an integral domain.
 - ii) Prove that the symmetric group S₃ has a trivial center.
 - iii) Let $(\alpha_1, \alpha_2, \alpha_3)$, $(\beta_1, \beta_2, \beta_3)$ be ordered bases of the real vector spaces V and W respectively. A linear transformation $T: V \to W$ maps the basis vectors as $T(\alpha_1) = \beta_1$, $T(\alpha_2) = \beta_1 + \beta_2$, $T(\alpha_3) = \beta_1 + \beta_2 + \beta_3$. Show that T is nonsingular. 4+3+3=10

- b) i) State and prove the fundamental theorem of group homomorphism.
 - ii) Reduce the quadratic form $5x^2 + y^2 + 10z^2 4yz 10zx$ to the normal form and show that it is positive definite. 5+5=10
- c) i) Prove that up to isomorphic there is only one infinite cyclic group.
 - ii) Prove that each eigenvalue of a real orthogonal matrix has unit modulus.

5+5=10
