530/Math. SKBU/UG/5th Sem/Math/HT502/20

U.G. 5th Semester Examination - 2020 MATHEMATICS

Course Code: BMTMCCHT 502

Course Title: Metric Spaces and Complex Analysis

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Give an example of a nowhere dense set.
 - b) Is every open ball in a metric space infinite set? Justify.
 - c) What is the smallest closed set containing Q in IR with respect to usual metric?
 - d) What is the largest open set contained in [1,2] with respect to R with discrete metric?
 - e) Prove that in a discrete metric space any set cannot have any limit point.
 - f) Write down the Cauchy-Riemann equations.

- g) Show that union of two bounded sets in a metric space is bounded.
- h) Is $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ convergent in \mathbb{R} with discrete metric? Justify.
- i) For every complex number z, show that $|e^z| \le e^{|z|}$.
- j) Show that $f(z) = e^z$, $\forall z \in \mathbb{C}$ is conformal on \mathbb{C} .
- k) Show that f(z) = Re(z), $\forall z \in \mathbb{C}$ is nowhere analytic.
- 1) Find the stereographic projection of the point (2, 3, 0).
- m) Show that $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.
- n) Define Möbius transformation.
- o) Show that harmonic conjugates of a harmonic function u differ by a constant in a region G of \mathbb{C} .

- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Show that $d(x, y) = |e^x e^y|$, $\forall x, y \in \mathbb{R}$ is a metric on \mathbb{R} .
 - b) Let 'A' be a subset of metric space (X, d). Show that if A is bounded in (X, d), then $\exists a \in X, r > 0$ real number such that $A \subset B_r(a)$.
 - c) Give examples to show that, if two sets are separated then their complements may or may not be separated.
 - d) Prove that in a discrete metric space (X, d),X is connected iff it is a singleton set.
 - e) Prove or disprove: Every subset of **N** is open in **N**.
 - f) Show that f(z)=|z|, $\forall z \in \mathbb{C}$ is nowhere differentiable but everywhere continuous in \mathbb{C} .
 - g) Let G be a region in \mathbb{C} and $f:G \to \mathbb{C}$ be an analytic function. Show that if f assumes only real values on G, then f is constant on G.
 - h) Find the radius of convergence of the power series, $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) z^{n^2}$.

 $5 \times 2 = 10$

- a) Let (X, d) be a metric space and Y be separable and dense in X. Show that X is separable.
- b) i) Show that in a metric space, every open set is union of open balls.
 - ii) If the real part of the complex number $\frac{z-i}{z-1}$ is zero, then show that the complex number z lies on the circle with centre $\frac{1+i}{2}$ and radius $\frac{1}{\sqrt{2}}$.
- c) i) Prove that a discrete metric space (X, d) is separable iff X is countable.
 - ii) Prove that if the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$ is R, then the radius of convergence of the power series $\sum_{n=1}^{\infty} n a_n z^{n-1}$ is also R. 2+3

- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Let (X, d) and (Y, d') be two metric spaces. Show that a function $f:(X, d) \rightarrow (Y, d')$ is continuous iff for all sets $A \subset X$,

$$f(\overline{A})\subset \overline{f(A)}$$
.

- ii) Show that continuous image of a separable metric space is separable.
- iii) let A be a non-empty subset of a metric space (X, d). Show that the function $f:(X, d) \to \mathbb{R}$ given by f(x) = d(x, A), $\forall x \in X$ is continuous. (here consider usual metric on \mathbb{R}) 4+3+3
- b) i) For a subset A of a metric space (X, d), prove that A is closed iff every sequence in A, which converges in X, converges to a point of A.
 - ii) Show that the convex combination of two metric is again a metric.
 - iii) If the mapping of z-plane upon w-plane be conformal, then show that the only form of transformation is w=f(z); where f(z) is an analytic function of z.

4+3+3

- c) i) Show that the function $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic and find its conjugate harmonic.
 - ii) Let (X, d) and (Y, d') be two metric spaces. A function $f:(X, d) \rightarrow (Y, d')$ is continuous if and only if for all closed sets F in (Y, d'), $f^{-1}(F)$ is closed in (X, d). Prove this.
 - iii) Let (X, d) be a metric space and A is a non-empty subset of X. Prove that A is disconnected iff we can express $A \subset G_1 \cup G_2$, where G_1 and G_2 are non-empty open sets in (X, d) such that $A \cap G_1 \neq \emptyset$, $A \cap G_2 \neq \emptyset$ but $A \cap (G_1 \cap G_2) = 4$.
