U.G. 3rd Semester Examination - 2020 MATHEMATICS

Course Code: BMTMCCHT301

Course Title: Real Analysis-II

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and Symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Pick out the true statement:
 - i) Every function from \mathbb{N} to \mathbb{R} is continuous.
 - ii) There exists a function from \mathbb{N} to \mathbb{R} which is not continuous.
 - b) If $f(x,y) = e^{\sin(\frac{x}{y})}$, write down $f_{xy}(x,y)$ at $(\frac{\pi}{2},1)$.
 - c) Change the order of the integration $\int_{y=0}^{1} \int_{x=0}^{y+4} \frac{2y+1}{x+1} dx dy .$

- d) Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $f(x) = 0, \forall x \in \mathbb{Q}$. Does $f(x) = 0, \forall x \in \mathbb{R}$?
- e) Let $D \subseteq \mathbb{R}$ and $f:D \to \mathbb{R}$, $g:D \to \mathbb{R}$ be continuous functions. Show that $h(x) = \max \{f(x), g(x)\}, \forall x \in D \text{ is continuous on } D.$
- f) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is continuous only at 1.
- g) Prove that $f(x) = \frac{1}{x^2}$, $\forall x \in (0,1)$ is not uniformly continuous on (0, 1).
- h) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is monotonically increasing on \mathbb{R} but not continuous on \mathbb{R} .
- i) Let I be an interval of \mathbb{R} and $f: I \to \mathbb{R}$ be a function such that f has a minimum at $C \in I$. Does f'(c) = 0?
- j) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is not differentiable only at 1.
- k) Let f be continuous of R. Then show that $A = \{x \in R \mid f(x) > 0\} \text{ is an open set.}$
- Give an example of a function which is continuous at a point but not derivable at that point.

- m) Let $f(x,y) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}$.
 - Does $f_x(0,0)$ exist? Justify.
- n) Obtain the fourth degree Taylor's polynomial approximation to $f(x)=e^{2x}$ about x=0.
- o) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that f is differentiable at $(a,b) \in \mathbb{R}^2$. Then which of the following is true
 - i) f has directional derivative at (a, b) in any direction.
 - f does not have directional derivative at(a, b) in some direction.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) State Cauchy's mean value theorem.
 - b) Let $f:[0,2] \to \mathbb{R}$ be continuous and f(0) = f(2). Prove that there exists a $c \in [0,1]$ such that f(c) = f(c+1).
 - c) Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in [-1,1] \cap Q \\ -1 & \text{if } x \in [-1,1] \cap (\mathbb{R} - Q). \end{cases}$$

Does there exist a function g such that g'(x) = f(x), $\forall x \in [-1,1]$?

- d) If $c_0 + \frac{c_1}{2} + \frac{c_2}{3} + \dots + \frac{c_n}{n+1} = 0$, where $c_0, c_1, \dots, c_n \in \mathbb{R}$, show that the equation $c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n = 0$ has at least one real root between 0 and 1.
- e) Let $f:[a,b] \to \mathbb{R}$ be such that $|f(x)-f(y)| \le M|x-y|^2$, $\forall x,y \in [a,b]$ for some real number M > 0,. Show that f is constant on [a, b].
- f) If $\lim_{x \to G} f(x) = l$, then show that $\lim_{x \to G} |f(x)| = |l|$. Is its converse true?
- g) Find the directional derivative of $f(x,y) = x^3 3xy + 4y^2 \forall (x,y) \in \mathbb{R}^2$ at (0,0) in the direction of the line that makes an angle of $\frac{\pi}{6}$ with the x-axis.
- h) Evaluate the double integral $\iint_R e^{x^2} dxdy$, where, the region R is given by $R: 2y \le x \le 2$ and $0 \le y \le 1$.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) i) Let I be an interval. Prove that if $f: I \to \mathbb{R}$ be such that f' exists and

bounded on I, then f is uniformly continuous on I.

- ii) Show that the function $f(x) = \frac{1}{1+x^2}, \forall x \in \mathbb{R} \text{ is uniformly}$ continuous on \mathbb{R} . 3+2
- b) Let I=[a,b] be a closed and bounded interval and $f:[a,b] \to \mathbb{R}$ be continuous on I. Then prove that $f(I) = \{f(x) : x \in I\}$ is a closed and bounded interval.
- c) i) Show that $f(x,y) = (y-x)^4 + (x-2)^4, \forall (x,y) \in \mathbb{R}^2$ a minimum at (2, 2).
 - ii) Show that $\lim_{(x,y)\to(0,0)} \sqrt{1-x^2-y^2} = 1$ using $\varepsilon \delta$ definitions. 2+3
- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) A function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} 2x, & x \in Q \\ 1-x, & x \in \mathbb{R} Q \end{cases}$ Prove that f is continuous at $\frac{1}{3}$ and discontinuous at every other point.

- ii) A function $f:[0,1] \to \mathbb{R}$ is continuous on [0, 1] and f assumes only rational values on [0, 1]. Prove that f is constant on [0, 1].
- iii) Let $c \in \mathbb{R}$ and a function $f : \mathbb{R} \to \mathbb{R}$ is continuous at c. If for every positive δ there is a point y in $(c \delta, c + \delta)$ such that f(y)=0, prove that f(c)=0.

5+2+3

- b) i) If f(x+y)=f(x)+f(y), for all $x, y \in \mathbb{R}$ and f is continuous at a point of \mathbb{R} , prove that f is uniformly continuous on \mathbb{R} .
 - ii) Evaluate the integral of f(x,y,z)=1over a tetrahedron with vertices at (0,0,0), (1,1,0), (0,1,0), (0,1,1). 4+6
- c) i) A function f is defined on some neighbourhood of c and $\lim_{h\to 0}\frac{f\left(c+h\right)-f\left(c-h\right)}{2h} \text{ exist. Does } f'(c)$ exist?
 - ii) Verify Rolle's Theorem for the function $f(x) = e^x \sin x$ in $[0, \pi]$.
 - iii) Find the points closest to the origin on the hyperbolic cylinder $x^2 z^2 = 1$.

2+3+5

337/Math [5] [*Turn Over*]