U.G. 3rd Semester Examination - 2021 MATHEMATICS

Course Code: BMTMCCHT301

Course Title: Real Analysis-II

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and Symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Evaluate $\lim_{x\to 0} \log |x|$.
 - b) Find $\frac{dx}{dy}$, when $f(x,y) = \log(x^2 + y^2) + \tan^{-1}(\frac{y}{x}) = 0.$
 - c) Find the point of discontinuity of $f(x) = \csc x$.
 - d) If f(x, y)=1, then find $\iint_{R} dx \, dy$ where R is the ractangle bounded by the lines x=a, x=b, y=c and y=d.

[Turn Over]

- e) Find the stationary points of the function $f(x,y) = x^3 + y^2 3x 6y 1$.
- f) Show that $z = f(x^2y)$, where f is differentiable, satisfies $x(\frac{\partial z}{\partial x}) = 2y(\frac{\partial z}{\partial y})$.
- g) Find the gradiant of $f(x, y, z) = x^2y^2 + xy^2 z^2$ at the point (3, 1, 1).
- h) Define directional derivative.
- i) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ which is continuous on \mathbb{R} but is not differentiable only at 1.
- j) Let $D \subset \mathbb{R}$ and $f : D \to \mathbb{R}$, $g : D \to \mathbb{R}$ be continuous functions. Show that $h(x) = \min\{f(x), g(x)\}, \forall x \in D \text{ is continuous on } D.$
- k) Define Lipschitz function on a interval $I \subset \mathbb{R}$.
- 1) Is $\lim_{(x,y)\to(0,0)} \frac{x^2 y^2}{x^2 + y^2}$ exists? Justify.
- m) Find $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$.
- n) Find z_x if $x^3 + y^3 + z^3 + 6xyz = 1$.

- o) Examine the equality of f_{xy} and f_{yx} where $f(x,y) = x^3y + e^{xy^2}$.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Show that $\log(1+x)$ lies between $x \frac{x^2}{2}$ and $x \frac{x^2}{2(1+x)}$, $\forall x > 0$.
 - b) Given an example of function f and g which are not continuous at a point $c \in R$ but the product fg is continuous at c.
 - c) Evaluate $\iint_E \frac{x^2}{y^2} dy dx$, E is bounded by x=2, y=x, xy=1.
 - d) Check the uniform continuity of the function $f(x) = \frac{\sin x}{x} \text{ on } (0, \infty).$
 - e) A function $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \begin{cases} x^2, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$

show that f is differentiable at 0 and f'(0) = 0.

- f) Change the order of the integration $\int_0^1 \! \int_y^1 \frac{\sin x}{x} \, dx \, dy \, .$
- g) The plane x=1 intersets the surface $z = x^2+y^2$ in a parabola. Using partial derivatives find

the slope of the tangent to the parabola at the point (1, 2, 5).

- h) Find the directional derivative of $f(x, y)=x^2+y^2$ at (2, 2) in the direction (1, 1).
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) A function f is defined on (-1, 1) by

$$f(x) = x^{\alpha} \sin \frac{1}{x^{\beta}}, x \neq 0$$
$$= 0, x = 0$$

Prove that (i) $0 < \beta < \alpha - 1$, f' is continuous at 0; (ii) if $0 < \alpha - 1 \le \beta$, f' is continuous at 0.

- b) i) Using the $\delta \epsilon$ approach, find $\lim_{(x,y)\to(0,0)} \left[y + x \cos\left(\frac{1}{y}\right) \right] = 0.$
 - ii) The cylinder $x^2+z^2=1$ is cut by the planes y=0, z=0 and x=y. Find the volume of the region in the first octant. 2+3
- c) Show that

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & \text{where } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

is continuous at (0, 0), possesses partial derivatives at (0, 0) but is not differentiable at (0, 0).

- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Calculate ξ in Cauchy's mean value theorem for the pair of functions $f(x) = \sin x, g(x) = \cos x \text{ on } \left[\frac{\pi}{4}, \frac{3\pi}{4}\right].$
 - ii) $f: R \to R$ is defined by f(x) = |x| + |x-1| + |x-2|, $x \in R$. Find the derived function f' and specify the domain of f'.
 - iii) Show that the function

$$f(x,y) = \begin{cases} (x+y)\sin\left(\frac{1}{x+y}\right); & x+y \neq 0 \\ 0 & ; & x+y=0 \end{cases}$$

is continuous at (0, 0) but its partial derivatives f_x and f_y do not exist at (0, 0). 3+3+4

- b) i) A function $f:[0,1] \rightarrow [0,1]$ is continuous on [0, 1]. Prove that there exist a point c in [0, 1] such that f(c) = c.
 - ii) Let I be an interval and a function $f: I \rightarrow R$ be differentiable on I. Then f'(I) is an interval.

- iii) Find the extreme values of f(x, y, z)=2x+3y+z such that $x^2+y^2=5$ and x+z=1. 3+2+5
- c) i) If p(x) is a polynomial of degree >1 and $K \in \mathbb{R}$, prove that between any two real roots of p(x)=0, there is a real root of p'(x)+kp(x)=0.
 - ii) Prove that between any two real roots of the equation $e^x \cos x + 1 = 0$, there is at least one real root of the equation $e^x \sin x + 1 = 0$.
 - iii) Show that

$$\iint_{\mathbb{R}} \sqrt{4a^2 - x^2 - y^2} \, dx dy = \frac{4}{9} (3\pi - 4) a^3,$$

where R is the upper half of the circle $x^2 + y^2 - 2ax = 0$. 4+3+3