U.G. 5th Semester Examination - 2021 MATHEMATICS

Course Code: BMTMDSHT3 [DSE 3]

Course Title: Theory of Equations

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Prove that $x^2 + x + 1$ is a factor of $x^{10} + x^5 + 1$.
 - b) Expand $f(x) = x^4 4x^3 + 3x^2 + 3x + 7$ as a polynomial in x-1.
 - c) Determine the multiple roots of the equation $x^5 + 2x^4 + 2x^3 + 4x^2 + x + 2 = 0$.
 - d) Prove that the roots of the equation $\frac{1}{x-1} + \frac{2}{x-2} + \frac{3}{x-3} = x \text{ are all real.}$
 - e) Show that for all real values of λ , the equation
 - $(x+3)(x+1)(x-2)(x-4) + \lambda(x+2)(x-1)(x-3) = 0$ has all its roots real and simple.

- f) Form a biquadratic equation with rational coefficients two of whose roots are $\sqrt{3} \pm 2$.
- g) Solve the equation $x^5 1 = 0$.
- h) Define special roots of the equation $x^n 1 = 0$.
- i) If α , β , γ be the roots of the equation $x^3 + 2x^2 + 1 = 0$, find the equation whose roots are $\alpha = \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$, $\gamma + \frac{1}{\gamma}$.
- j) Expand $f(x) = x^4 4x^3 + 8x^2 + 8x + 7$ as a polynomial in x-4.
- k) If α , β , γ , δ be the roots of the equation $x^4 x^3 + 2x^2 + x + 1 = 0$ find the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)(\delta + 1)$.
- 1) Determine the multiple roots of the equation $x^4 + 2x^3 + 2x^2 + 2x + 1 = 0$.
- m) Apply Descartes' rule of signs to examine the nature of the roots of the equation $x^4 + 2x^2 + 3x 1 = 0$.
- n) Define reciprocal equation.
- o) If m, n are integers prime to each other, then prove that the equations $x^m 1 = 0$ and $x^n 1 = 0$ have no common root except 1.

- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Form the equation whose roots are $\alpha+\beta+\gamma, \ \alpha+\omega\beta+\omega^2\gamma, \ \alpha+\omega^2\beta+\omega\gamma \ , \ \ \text{where}$ ω is an imaginary cube root of 1.
 - b) Find the condition that the roots of the equation $x^3 px^2 + qx r = 0$ will be in geometric progression.
 - c) Obtain the condition that $x^3 + 3px + q$ may have a factor of the form $(x-a)^2$.
 - d) Find the remainder when $x^5 3x^4 + 4x^2 + x + 4$ is divided by (x+1)(x-2).
 - e) If α be a multiple root of order 3 of the equation $x^4 + bx^2 + cx + d = 0$, $(d \ne 0)$, show that $\alpha = -\frac{8d}{3c}$.
 - f) If α , β , γ , δ be the roots of the biquadratic equation $x^4 + px^3 + qx^2 + rx + s = 0$, find the value of (i) $\Sigma \alpha^2 \beta$, (ii) $\Sigma \alpha^2 \beta \gamma$.
 - g) Solve the reciprocal equations $x^4 + x^3 + 2x^2 + x + 1 = 0.$
 - h) Find the special roots of the equation $x^{12}-1=0$.

3. Answer any **two** questions:

- $5 \times 2 = 10$
- a) Solve the equation by Cardan's Method:

$$27x^3 + 54x^2 + 198x - 73 = 0$$

- b) Solve the equation $x^4 4x^3 4x^2 4x 5 = 0$, given that two roots α, β are connected by the relation $2\alpha + \beta = 3$.
- c) If α be an imaginary root of the equation $x^7 1 = 0$, find the equation whose roots are $\alpha + \alpha^6$, $\alpha^2 + \alpha^5$, $\alpha^3 + \alpha^4$.
- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Find the values of k for which the equation $x^4 + 4x^3 2x^2 12x + k = 0$ has four real and unequal roots. 5
 - ii) If α , β , γ be the roots of the equation $ax^3 + bx^2 + cx + d = 0, d \neq 0, \text{ find the equation whose roots are}$ $\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}, \gamma + \frac{1}{\gamma}.$
 - b) i) Solve the equation $x^5 1 = 0$ and deduce the values of $\cos \frac{\pi}{5}$ and $\cos \frac{2\pi}{5}$.
 - ii) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the equation

whose roots are

$$\alpha + \beta - 2\gamma$$
, $\beta + \gamma - 2\alpha$, $\gamma + \alpha - 2\beta$

Deduce the condition that the roots of the given equation may be in arithmetic progression. 5

- c) i) Calculate Sturm's function and locate the position of the real roots of the equation $x^3 - 7x + 7 = 0$.
 - ii) If the equation whose roots are squares of the roots of the cubic $x^3 ax^2 + bx 1 = 0$ is identical with this cube, prove that either a=b=0, or a=b=3, or a, b are the roots of the equation $t^2+t+2=0$.
