121/Math.

SKBU/UG/1st Sem/Math/HT102/21

U.G. 1st Semester Examination - 2021 MATHEMATICS

Course Code: BMTMCCHT102

Course Title: Algebra-I

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and Symbols have their usual meanings.

1. Answer any **ten** questions from the following:

 $1 \times 10 = 10$

- a) Express $\sqrt{5}$ as a simple continued fraction.
- b) Apply Descartes' rule of signs to ascertain the minimum number of complex roots of the equation $x^7 - 3x^3 + x^2 = 0$.
- c) If α , β , γ be the roots of the cubic equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \alpha^2 \beta^2$.
- d) Find the power set of $S = \{0, \theta, \{1, 2\}\}$.
- e) If $iz^2 \overline{z} = 0$, find the value of |z|.

- f) If the diophantine equation 231x+35y=11 solvable?
- g) Find the number of common roots of the equations $x^{24}-1=0$ and $x^{36}-1=0$ in the set of complex numbers.
- h) Let S be a finite set having 7 elements, find the number of reflexive relation defined on S.
- i) Prove that for any integer n, $n(n+1)^2 > 4(n!)^{\frac{3}{n}}$.
- j) If a_1 , a_2 , ..., a_n be n positive real numbers in ascending order of Magnitude, prove that $\frac{a_1^2 + a_2^2 + ... a_n^2}{a_1 + a_2 + ... a_n} < a_n$.
- k) Find the principal value of $(-i)^{-i}$.
- 1) Find the number of positive divisors of 2700.
- m) If α and β are the roots of the equation $x^2+1=0$, find the value of $\alpha^{2021}+\beta^{2021}$.
- n) Let r be an integer such that $1 \le r \le n$ and let A be a set having r elements and B be a set having n elements. Write down the number of injective mappings defined from A to B.

- o) Find the number of special roots of the $x^{64}-1=0$.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Give an example of a relation on a set which is reflexive and transitive, but not symmetric.
 - b) If a, b, c be positive real numbers, prove that $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3.$
 - c) If n be an odd positive integer, prove that $\phi(2n) = \phi(n)$.
 - d) If z_1 , z_2 and z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = \left|\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right| = 1$, find the value of $|z_1 + z_2 + z_3|$.
 - e) Let A and B be two finite sets with |A| = 5, |B| = 3, find the number of surjections from A to B.
 - f) If $1, \alpha_1, \alpha_2, ..., \alpha_{n-1}$ are the roots of the equation $\alpha^n 1 = 0$, find the value of $(1 \alpha_1)(1 \alpha_2)....(1 \alpha_{n-1})$.

- g) Find the maximum value of $(x+2)^5 (7-x)^4$, when -2 < x < 7.
- h) If $f: A \to B$ and $g: B \to C$ be two mappings such that gof: $A \to C$ is surjective, prove that g is surjective.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) Find the equation of the squared differences of the roots of the cubic $x^3 + x^2 x = 1$. Hence show that two roots of this equations are equal. 4+1
 - b) i) Using principle of induction, prove that $3^{2^n} 1$ is divisible by 2^{n+1} for all $n \in \mathbb{N}$.
 - of 12 under divisible relation form a lattice. 3+2=5
 - c) i) State Descartes rule of sign.
 - ii) Let $f: S \to \mathbb{R}$ defined by $f(x) = \frac{x}{1-|x|}, x \in S$ where $S = \left\{ x \in \mathbb{R} : -1 < x < 1 \right\}.$

Show that f is a bijection and also determine f^{-1} . 1+4=5

- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Solve by Ferrari's method $x^4 + 12x 5 = 0$.
 - ii) If z is a variable complex number such that an amplitude of $\frac{z-i}{z+i}$ is $\frac{\pi}{4}$. Show that the point z lines on a circle in the complex plane.
 - iii) Prove that the equation $(x+1)^4 = a(x^4+1)$ is a reciprocal equation if $a \ne 1$. 5+3+2=10
 - b) i) State and prove Fermat's theorem.
 - ii) If $\cos^{-1}(u+iv) = p+iq$, where p, q, u, v are real, prove that $\cos^2 p$ and $\cosh^2 q$ are the roots of the equation $x^2 - (1+u^2+v^2)x + u^2 = 0$.
 - iii) Find the special root of the equation $x^{20} 1 = 0$. Deduce that $\cos \frac{\pi}{10}$, $\cos \frac{3\pi}{10}$, $\cos \frac{7\pi}{10}$, $\cos \frac{9\pi}{10}$ are the roots of the equation $16t^4 20t^2 + 5 = 0$. 3+2+5=10

- c) i) Prove that an equivalence relation *P* on a set S determines a partition of S and conversely, each partition of S yields an equivalence relation on S.
 - ii) Discuss Cardan's method of solution of the cubic $Z^3 + 3Hz + G = 0$, where suppose that H and G to be real and that $G^2 + 4H^3 > 0$.
 - iii) Find the Hasse diagram of the poset (S, \le) , where $S = \{1, 2, 3, 4, 6, 12\}$ and $a \le b$ means "b is divisible by a".

$$(2+3)+3+2=10$$
