U.G. 6th Semester Examination - 2022 MATHEMATICS

Course Code: BMTMDSHT5 [DSE-5]

Course Title: Mechanics-II

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Can a force and a couple in the same plane produce equilibrium?
 - b) Write down the mathematical expression for the work done by a force \vec{F} in moving a particle round a closed curve C.
 - c) What do you mean by 'constraints on a system'?
 - d) What is the value of resultant (R) if two equal forces P acting at a point of a body at an angle 120°?

- e) Define central axis of a system of forces.
- f) Give an example of a non-homogeneous and compressible fluid.
- g) "All the properties are true for the actual work will also be true in case of the virtual work"Is the statement true?
- h) What do you mean by a deformable body?
- i) Define ideal fluid.
- j) Write down the conditions of equilibrium of a system of non-coplanar forces.
- k) What is meant by the stress component τ_{xy} at a point (x, y, z) is a continuous?
- 1) Write down the equation for a gas in an adiabatic temperature change.
- m) If ρ be the mean density of the body and ρ' be the density of the fluid. What is the condition between ρ and ρ' such that the solid can not float?
- n) What is the relation between depth of centre of pressure and centre of gravity of a plane area immersed in a heavy liquid under gravity?
- o) Write down the equation that determines the pressure at any point in the fluid.

700/Math.

- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) State the principle of virtual works for a particle.
 - b) Distinguish between body forces and contact forces with examples.
 - c) Write down the pressure-density relation for a perfect gas in isothermal change of state.
 - d) State Archimedes' principle for a floating body.
 - e) State the necessary and sufficient condition of equilibrium of any system of coplanar forces acting on a body.
 - f) Write down the stress matrix at a point in an ideal fluid, explaining the symbols used.
 - g) Distinguish between vapour and gas.
 - h) Two parallel and equal forces are acting on a system with opposite directions. What will be the resultant?
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) A telegraph wire, stretched between two poles at distance d meter apart, sags n meter in the middle. Prove that the tension at the ends is approximately, $w\left(\frac{d^2}{8n} + \frac{7}{6}n\right)$, where w is the

- weight of unit length of the unstretched wire.
- b) A mass of fluid where density at (x, y, z) varies inversely as (x+y+z) is under the forces $(y+z)^2 x^2$, $(z+x)^2 y^2$, $(x+y)^2 z^2$. Show that fluid will be at rest. Also find the surface of equal pressure. 3+2
- c) A conical vessel of height h and vertical angle 2α , contains water whose volume is one-half that of the cone, if the vessel and the contained water revolve with uniform angular velocity ω and no water overflows, show that ω must not

be greater than
$$\sqrt{\frac{2g}{3h}}\cot\alpha$$
.

- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Two forces 2p and p act along the lines whose equations are $y = x \tan \alpha, z = c$; and $y = -x \tan \alpha, z = -c$, respectively. Find the equation of the central axis.
 - ii) A heavy uniform rod rests with one end against a smooth vertical wall and with a point in its length resting on a smooth peg. Find the position of equilibrium and show that it is stable.

 5+5

- b) i) A solid sphere rests inside a fixed rough hemispherical bowl of twice its radius. Show that however large a weight is attached to the highest point of the sphere, the equilibrium is stable.
 - ii) Show that the necessary and sufficient condition for equilibrium of a fluid under the action of external forces whose components along the co-ordinate axes are X, Y, Z acting at a point (x, y, z) is

$$X\left(\frac{\partial Y}{\partial z} - \frac{\partial Z}{\partial y}\right) + Y\left(\frac{\partial Z}{\partial x} - \frac{\partial X}{\partial z}\right) + Z\left(\frac{\partial X}{\partial y} - \frac{\partial Y}{\partial x}\right) = 0.$$

c) i) If T be the absolute temperature at a height z and T_0 be its value at the sea level in the atmosphere having convective equlibrium of temperature satisfying the law $p = k\rho^{\gamma}$, prove that

$$\frac{T}{T_0} = 1 - \frac{\gamma - 1}{\gamma} \cdot \frac{rz}{H(r+z)},$$

where r is the radius of the earth and H the heights of the homogeneous atmosphere.

ii) Find the general cartesian equations of the equilibrium of a string under coplanar forces. 5+5