U.G. 6th Semester Examination - 2022 MATHEMATICS

Course Code: BMTMDSHT6 [DSE-6]

Course Title: Point Set Topology

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) "The set of all rational points whose coordinates are both rational in the coordinate plane \mathbb{R}^2 is countable". Is it true?
 - b) State Baire's category theorem.
 - c) Define subspace topology.
 - d) Define a linearly ordered set.
 - e) Find the open sets for the topological space (X,τ) where $X = \{a,b\}, \tau = \{\phi,\{a\},X\}$.
 - f) State continuum hypothesis.

- g) Give an example of a bounded metric.
- h) What is the interior of the set [2, 3] with respect to IR with discrete topology?
- i) Define homeomorphism between two topological spaces.
- j) Give an example of a non-metrizable topological space.
- k) Write down a base for the discrete topology on X.
- 1) Define regular topological space.
- m) "Any discrete space with more than one point is disconnected." Is it true?
- n) Which of the following is not a topological property:
 - i) Compactness
 - ii) Connectedness
 - iii) boundedness
 - iv) metrizability
- o) Let A, B be compact subsets of a metric spaceX. Is A∪B comapet?

- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Define Zorn's lemma.
 - b) Define 'Finer' and 'Coarser' topology.
 - Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}\}\}$. Whether (X, τ) forms a topology or not?
 - d) Give an example of a sequence B₁, B₂, ... of closed sets in a topological space X whose union is not closed.
 - e) Write down a neighbourhood base at x in \mathbb{R}^2 with usual topology.
 - f) Define a map to show that the open interval (a, b) in \mathbb{R} with usual topology is homeomorphic to (0, 1).
 - g) Prove that every finite set in a Hausdorff space X is closed.
 - h) Define seperable topological space.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) Prove that the union of countably many countable sets is countable.
 - b) i) Give a counter example to show that the property of being a Cauchy sequence is not topological.

- ii) Let us consider the real function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Is it an open map? Justify. 3+2=5
- c) Prove that the image of a connected space under a continuous map is connected.
- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Prove that the collection P of all polynomials $p(x) = a_0 + a_1x + ... + a_mx^m$; with integral co-efficients, a_0 , a_1 ,..., a_m is denumerable.
 - ii) Prove that the intervals [0, 1], [0, 1] and [0, 1] have the same cardinality.

6+4=10

- b) i) Let τ be the collection of subsets of \mathbb{N} consisting of all subsets of the form $G_m = \big\{m, m+1, m+2, ...\big\}, m \in \mathbb{N}$ Show that τ is a topology on \mathbb{N} .
 - ii) Show that every closed subspace of a compact space is compact. 5+5=10
- c) i) Prove that every compact subspace of a Hausdorff space is closed.
 - ii) Show that any infinite subset of a discrete topological space X is not compact.

6+4=10
