U.G. 2nd Semester Examination - 2022 MATHEMATICS [HONOURS]

Course Code: BMTMCCHT202

Course Title: Ordinary Differential Equations and Linear Algebra

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Write down the order and degree of the differential equation $\left(\frac{d^3y}{dx^3}\right)^{\frac{3}{2}} + 2 \cdot \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^5$.
 - b) What is the number of arbitrary constants in the complete primitive of the differential equation $\phi\left(x, y, \frac{dy}{dx}, \frac{d^3y}{dx^3}\right) = 0$.

- c) Let F be a finite field with four elements. What is the total number of non-zero proper subspaces of the vector space F^2 over F?
- d) Find the value of *m* which makes the differential equation

$$(a^2 - mxy - y^2)dx - (x + y)^2 dy = 0$$

exact.

- e) Give the geometrical interpretation of the differential equation $f\left(x, y, \frac{dy}{dx}\right) = 0$.
- f) Interpret the simultaneous equations $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ geometrically.
- g) Determine the most general function F(x, y) such that the differential equation F(x, y)dx + (1-xy)xdy = 0 is exact.
- h) Find the Wronskian of the functions e^{-x} , $\sin x$.
- i) Obtain a particular integral of $(D^2 + 1)y = \sin x$.
- j) What is the linear span of an empty set of vectors?

- k) Obtain a basis of \mathbb{R}^3 containing the vector (-1, 0, 2).
- 1) Solve $x \frac{dy}{dx} + y = xy^2$.
- m) Write down the general solution to the equation x+2y+4z=0; $(x, y, z) \in \mathbb{R}^3$.
- n) Show that the set

$$V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}$$

is not a subspace of \mathbb{R}^3 .

- o) Give an example of an infinite dimensional vector space.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Obtain the complete primitive and the singular solution of $y = px + \sqrt{1 + p^2}$.
 - b) Evaluate $\frac{1}{D^2 1} x e^x$, where $D \equiv \frac{d}{dx}$.
 - c) Find the differential equation of all parabolas of latus rectum 4a and axis parallel to y axis.
 - d) Show that the functions $\cos x$, $\cos^3 x$, $\cos 3x$ are linearly independent on $(-\infty, \infty)$.

- e) Determine and integrating factor of $xydx (x^2 + 2y^2)dy = 0$ and hence solve the equation.
- In \mathbb{R}^3 , let $S = \{\alpha, \beta, \gamma\}$ and $T = \{\alpha, \alpha + \beta, \alpha + \beta + \gamma\}$. Show that L(S) = L(T).
- g) Examine whether or not $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\} \text{ is a subspace }$ of \mathbb{R}^3 .
- h) Find the coordinate vector of α in \mathbb{R}^3 relative to the basis $(\alpha_1, \alpha_2, \alpha_3)$ where $\alpha = (0, 3, 1)$, $\alpha_1 = (1, 1, 0)$, $\alpha_2 = (1, 0, 1)$, $\alpha_3 = (0, 1, 1)$.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) i) Prove that a linearly independent set of vectors in a finite dimensional vector space V over a field F is either a basis of V or it can be extended to a basis of V.
 3
 - ii) Let $S = \{\alpha_1, \alpha_2, \alpha_3\}$ with $\alpha_1 = (1, 2, 0)$, $\alpha_2 = (3, -1, 1)$ and $\alpha_3 = (4, 1, 1)$. Find a proper subset of S that can generate L(S).

- b) Show that the orthogonal trajectories of the system of co-axial circles $x^2 + y^2 + 2\lambda x + c = 0$ form another system of co-axial circles $x^2 + y^2 + 2\mu y c = 0$, where λ , μ are parameters, and c is a given constant.
- c) i) Solve $\frac{d}{dx} \left(\cos^2 x \frac{dy}{dx} \right) + y \cos^2 x = 0$ by reducing to normal form.
 - ii) Solve $9x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 0$.
- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) If $y = \phi_1(x)$ and $y = \phi_2(x)$ are any two solutions of $\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$, in which P and Q are continuous functions on some interval I, then their Wronskian $W(\phi_1, \phi_2)$ is either identically zero or nowhere zero on I.
 - ii) Prove that the homogeneous system AX=O containing n equations in n unknowns has a non-zero solution if and only if rank of A < n.

[Turn Over]

(5)

- iii) Prove, by an example, that the union of two subspaces of V is not in general, a subspace of V. 4+4+2
- b) i) Find the orthogonal trajectories of the family of cardioides $r = a(1-\cos\theta)$, a being a variable parameter.
 - ii) Solve, by the method of variation of parameter, the equation $\frac{d^2y}{dx^2} y = \frac{2}{1+e^x}.$
 - iii) By Picard's theorem, find first and second approximations of $\frac{dy}{dx} = xy$ with y(0) = 1.
- c) i) Solve the simultaneous equations $\frac{d^2x}{dt^2} + \frac{dy}{dt} + x + y = t, \quad \frac{dy}{dt} + 2x + y = 0;$ given that x = y = 0 at t = 0.
 - ii) Find the dimension of the subspace S of \mathbb{R}^3 defined by $S = \{(x, y, z) \in \mathbb{R}^3 : 2x + y z = 0\}$. Also find a basis of S. 5+5