470/Math.

SKBU/UG/4th Sem/Math/HT402/22

U.G. 4th Semester Examination - 2022 MATHEMATICS

[HONOURS]

Course Code: BMTMCCHT402

Course Title: Partial Differential Equation, Laplace Transform and Tensor Analysis

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Notations and Symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) State Ricci Lemma.
 - b) Define 'dummy index' with example.
 - c) Prove that $\delta_k^i \delta_n^k \delta_i^u = n$.
 - d) Define inner product of two tensors.
 - e) Define orthogonality of two vectors for covariant components.
 - f) Prove that $\delta_{i,k}^i = 0$.
 - g) Define a quasi-linear partial differential equation.

h) Write down the Lagrange's auxiliary equation for the partial differential equation $y^2p - xyq = x(z-2y), \text{ where } p = \frac{\partial z}{\partial x}, \ q = \frac{\partial z}{\partial y}.$

- i) What is the complete integral of p+2q=0?
- j) Define degree of a partial differential equation.
- k) What will be the degree of the partial differential equation $\frac{\partial z}{\partial x} = \frac{5z}{\frac{\partial z}{\partial x}}$.
- 1) Find the Laplace transform of $F(t) = \frac{e^{at} 1}{a}$.
- m) Find $L^{-1}\left\{\frac{1}{2s-5}\right\}$.
- n) State initial value theorem for Laplace transform.
- o) If $L\{f(t)\}=\frac{e^{-\frac{2}{s}}}{s}$, find the value of $L\{f(3t)\}$.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) If $A_{i\,j}$ is a skew symmetric tensor, show that $\left(\delta^i_j \delta^k_l + \delta^i_l \delta^k_j \right) A_{ik} = 0 \, .$

Overl 470/Math.

(2)

- If A_i is a tensor of type (0, 1), then show that $\frac{dA_i}{\Delta x^k}$ is not in general a tensor. Write down the condition for which it becomes a tensor.
- Prove that [ij, k] = [ji], k.
- Find a partial differential equation by eliminating a and b from $z = axe^y + \frac{1}{2}a^2e^{2y} + b$.
- Write down the Charpit's auxiliary equations e) for the PDE $z^{2}(p^{2}z^{2}+q^{2})=1$.
- Show that the surfaces represented by Pp + Qq = R are orthogonal to the surface represented by Pdx+Qdy+Rdz=0, where P, Q, R are functions of x, y and z.
- If L(F(t)) = f(s), then prove $L\left\{\frac{F(t)}{t}\right\} = \int_{0}^{\infty} f(s)ds$, provided the integral exists.
- h) Find $L^{-1} \left\{ \frac{3s-8}{4s^2+25} \right\}$.

3. Answer any two questions:

the

Using Laplace Transformation method, solve value problem

 $5 \times 2 = 10$

$$\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 4e^{2t}, \text{ given that } y = -3,$$

$$\frac{dy}{dt} = 5$$
 when t=0.

initial

- Find the complete integral of $16p^2z^2 + 9q^2z^2 + 4z^2 - 4 = 0.$
- Define Christoffel symbol of 1st and 2nd kind. Also, prove that $\begin{cases} i \\ i i \end{cases} = \frac{\partial}{\partial x^{j}} \log \sqrt{g}$, where $g = \left| g_{ij} \right| > 0.$
- Answer any **one** question: $10 \times 1 = 10$
 - Prove that a skew-symmetric tensor of a) order two have at most $\frac{1}{2}$ n(n-1) different non-zero components in ndimensional space.
 - Prove the identities $g_{ij,k} = 0$, $g_{jk}^{ij} = 0$ and $\delta_{ik}^i = 0$.

iii) If Ai and Bi are contravariant and covarriant vectors respectively, then show that AiBi is an invariant.

$$3+5+2=10$$

- b) i) Solve by Charpit's method the PDE $(x^2 y^2)pq xy(p^2 q^2) = 1.$
 - ii) State and prove quotient law for tensor of type (0, 2).
 - iii) Evaluate $L^{-1}\left\{e^{-4s}/(s-3)^4\right\}$. 5+3+2=10
- c) i) Apply the convolution theorem to prove that

$$B(m, n) = \int_0^t u^{m-1} (1-u)^{n-1} du = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)},$$

 $m > 0, n > 0.$

- ii) If $A_{ij}^k B_k^{il} = 0$ for every B_k^{il} , prove that A_{ij}^k vanishes identically.
- iii) Discuss the geometrical interpretation of complete integral for the PDE f(x, y, z, p, q) = 0. 5+3+2=10
