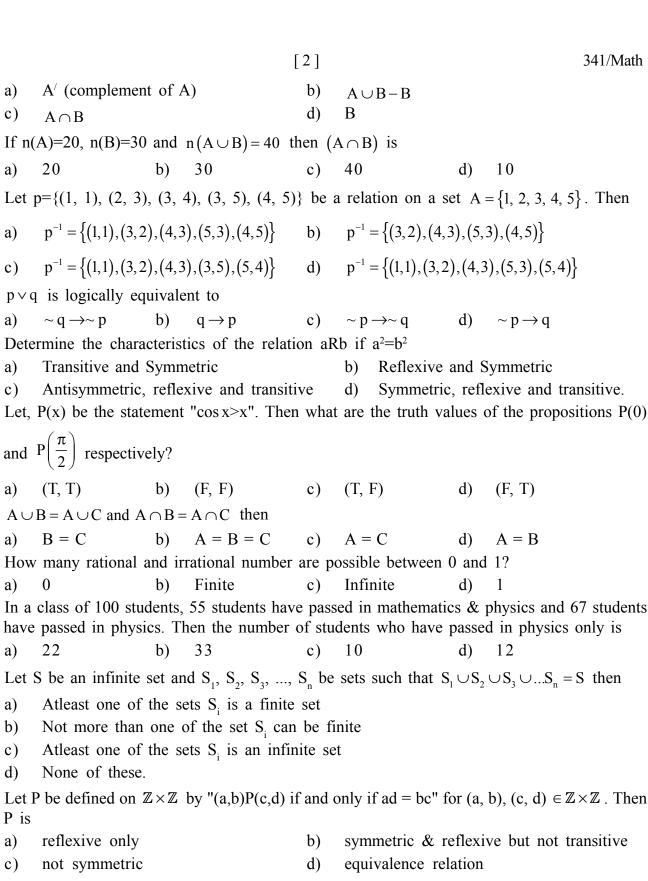

U.G. 3rd Semester Examination - 2020 MATHEMATICS


Course Code: BMTMSERT304
Course Title: Logic and Sets

Full Marks : 50	Time: 2 Hour

The figures in the right-hand margin indicate marks.

	, ,	O		O				
Ansv	ver all the questions by ch	noosing correct a	lterna	tive:		2×25=50		
1.	If A and B are subsets of	a set X, then wh	at is	$\{A \land (x - B)\} \cup B$	equa	1 to?		
2.	a) $A \cup B$ b) The inverse of $p \rightarrow q$ is			A	d)	В		
2	a) $\sim p \rightarrow \sim q$ b)							
3.	The total number of different reflexive relation on a set of 16 elements is							
	a) $4^{16^2} - 16$ b)	$5^{16^2} - 16$	c)	$2^{16^2} - 16$	d)	$3^{16^2} - 16$		
4.	Let $A = \{1, 3, 5\}, B = \{2, 4\}$. Then $A \times B =$							
	a) {(1, 2), (1, 4), (3, 2), (3, 4),(5, 2), (4, 5)	-				
	b) {(2, 1), (2, 3), (2, 5), (4, 1),(4, 3), (4, 5)}							
	c) {(1, 2), (1, 4), (3, 2							
	d) {(1, 2), (1, 4), (3, 2), (4, 3),(5, 2), (4, 5)}					
5.	A relation R on a set A is							
	a) Reflexive b)				d)	Antisymmetric		
6.	For a set A, consider the	following statem	nents					
	$i) \qquad A \cup P(A) = P(A)$	ii) $\{A\} \cup P(A)$	(a) = P((A)	iii)	$\{A\} \cap P(A) = A$		
	Which of the statements given above are correct?							
	a) (i) only b)	(i) and (ii)	c)	(ii) and (iii)	d)	None		
7.	The truth table for $(p \lor q)$	$\vee (p \wedge r)$ is the s	ame a	s the truth table	for			
	a) $(p \lor q) \land (p \lor r)$ b)	$(p \lor q) \land r$	c)	$p \vee q$	d)	$(p \lor q) \land (p \land r)$		
8.	The contrapositive of p-	of q is the propos	sition	of				
	a) $\sim p \rightarrow \sim q$ b)	$\sim q \rightarrow \sim p$	c)	$q \rightarrow p$	d)	$\sim q \rightarrow p$		
9.	Let $A=\{2, 3, 5, 6\}, B=\{8, 6\}$							
	10), (5, 10), (5, 20)}then	, , , ,	1		3			
	a) Image of $p = \{8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10$	20}	b)	Image of $p = \{2$, 5}			
	c) Image of $p = \{2, 8,\}$			Image of $p = \{8$		5}		
10.								
	a) False b)	Negated	c)	True		Both true and false		
11.	The symbolization for a continuous	conjuction is						
	a) $p \rightarrow q$ b)	p & q	c)	$p \vee q$	d)	~p		
12	The shaded area of figure	is best describe	d bv					

Let P be defined on $\mathbb{Z} \times \mathbb{Z}$ by "(a,b)P(c,d) if and only if ad = bc" for (a, b), (c, d) $\in \mathbb{Z} \times \mathbb{Z}$. Then 22. P is

a) reflexive only

not symmetric

Let, $A = \{(x, y) : y = e^x, x \in \mathbb{R} \}$ and $B = \{(x, y) : y = e^{-x}, x \in \mathbb{Z} \}$ Then

None of these.

A' (complement of A)

30

 $q \rightarrow p$

(F, F)

Finite

33

b)

b)

b)

b)

b)

b)

Transitive and Symmetric

a)

c)

13.

14.

16.

17.

18.

19.

20.

21.

a)

b)

c)

c)

a) (T, T)

B = C

 $A \cap B$

15. $p \vee q$ is logically equivalent to

 $\sim q \rightarrow \sim p$

and $P\left(\frac{\pi}{2}\right)$ respectively?

b) a)

 $A \cap B = \{(0,1)\} \quad c) \qquad A \cap B = \mathbb{R}^2$

If a set contains 8 elements then the number of subset is-

a) 512 b) 256 c) 128 d) 1024

None of these

d)

What is the cardinality of the set of odd positive integers less than 10? 25.

a) 10 b) 15 c) 3 d) 20