U.G. 4th Semester Examination - 2021 MATHEMATICS

Course Code: BMTMCCHT 403

Course Title: Real Analysis-III

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and Symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Let $f(x) = \frac{1}{x}$ on (0, 1] and P_n be the partition $\left\{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, \frac{n-1}{n}, 1\right\}$ of (0, 1]. Compute $L(P_n, f)$.
 - b) Give an example of a function which is integrable but primitive does not exist.
 - c) State 2nd MVT of integral calculus in Bonnet's form.

- d) Show that, $\int_0^\infty \sqrt{x} \cdot e^{-x^3} dx = \frac{\sqrt{\pi}}{3}$.
- e) Define Riemann sum of a bounded function on [a, b].
- f) Evaluate: $\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)$.
- g) Examine whether fundamental theorem of integral calculus is applicable to evaluate the integral $\int_0^3 x[x] dx$.
- h) Using Abel's test show that the series

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1} . x^{n}}{n^{p} \left(1+x^{n}\right)}; \ \ 0$$

is uniformly convergent on [0, 1].

- i) Examine whether the sequence $\left\{\frac{x^n}{1+x^n}\right\}$; $0 \le x \le 2$ converges uniformly on [0, 2].
- j) Evaluate: $\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx$
- k) Find the radius of convergence of the power series $\frac{1}{3} x + \frac{x^2}{3^2} x^3 + \frac{x^4}{3^4} x^5 + \dots$

- If f(x) be non-negative continuous function on [a, b] and $\int_a^b f(x) dx = 0$, then show that f(x) = 0; $\forall x \in [a, b]$.
- m) State the Darboux theorem on upper and lower sum for all partitions P of [a, b] satisfying $\|P\| \le \delta$.
- n) Show that Riemann integrals satisfy linearity properties.
- o) Define uniform convergence for a series of functions.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Prove that, $2^{n} \Gamma\left(n + \frac{1}{2}\right) = 1.3.5...(2n-1)\sqrt{\pi}$.
 - b) Evaluate: $\lim_{x\to 0} \frac{x}{1-e^{x^2}} \cdot \int_0^x e^{t^2} dt$ with proper justification.
 - c) For a function f, continuous on [0, 1] show that $\lim_{n\to\infty}\int_0^1 \frac{nf(x)}{1+n^2x^2} dx = \frac{\pi}{2}f(0)$.
 - d) Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined by, f(x) = 1 ; x = 0 $= x ; 0 < x \le 1.$

Show that $\frac{1}{f}$ is not integrable on [0, 1].

- e) If $f(x)=x^2+x$ is expresses as a Fourier series in (-2, 2) to which values this series converges at x=2?
- f) Examine the convergence of the sequence $\left\{\left(x_{n},\,y_{n}\right)\right\}_{n} \text{ where } x_{n} = \left(1 + \frac{1}{n}\right)^{n} \text{ and } y_{n} = \sqrt[n]{n} \ .$
- g) Prove that

 $1 + e^{-x} \cos x + e^{-2x} \cos 2x + ... + e^{-nx} \cos nx + ...$ converges uniformly on a set $S(\subset \mathbb{R})$ which is bounded below by a positive constant.

- h) Show that the second MVT of integral calculus in Weierstrass' form does not hold in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ for the function $f(x) = \cos x$ and $g(x) = x^2$.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) If Q be any refinement of a partition P of [a, b], satisfying $\|P\| \le \delta$, containing exactly k additional points of division than P. Then for any bounded function $f:[a, b] \to \mathbb{R}$ defined on [a, b] prove that,

$$0 \le U\big(P,\,f\big) - U\big(Q,\,f\big) \le \big(M-m\big).k.\delta$$
 and
$$0 \le L\big(Q,\,f\big) - L\big(P,\,f\big) \le \big(M-m\big).k.\delta$$

where, M and m are the supremum and infimum of f on [a, b] respectively.

b) Find the Fourier series of $f(x) = x \sin x$ in $[-\pi, \pi]$ and deduce that,

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots$$

- c) Let $f_n(x) = \frac{nx}{1+nx}$, $\forall x \in [0, 1]$, $\forall n \in IN$. Show that the sequence of function $\{f_n\}$ converges to a function f on [0, 1] but the convergence is not uniform on [0, 1].
- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Let f:[a, b]→R be a function defined and bounded on [a, b] such that f is continuous except for a finite number of points of [a, b]. Show that f is Riemann integrable.
 - ii) State and prove Abel's test for convergence of an improper integral.

b) i) Let f be a function Riemann integrable on [a, b]. Then,

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a),$$

where M and m are the supremum and infimum of f on [a,b].

Consequently, $\int_a^b f(x)dx = \mu(b-a)$ for some μ with $m \le \mu \le M$.

Also if f is continuous on [a, b]. Then there exists a point ξ in [a, b] such that, $\int_a^b f(x) dx = (b-a)f(\xi).$

ii) Assuming the convergence of the integral show that,

$$\int_0^1 \log \Gamma(x) \, dx = \frac{1}{2} \log(2\pi) \, . \quad (3+2+1)+4$$

- c) i) State and prove Cauchy Hadamard test for determination of radius of convergence of a power series.
 - ii) Find the radius of convergence of the power series

$$x + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \dots$$
 8+2
