U.G. 2nd Semester Examination - 2021 MATHEMATICS [HONOURS]

Course Code: BMTMCCHT201

Course Title: Real Analysis-I

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Notations and Symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) What is the law of trichotomy in \mathbb{R} ?
 - b) Show that $\lim_{n\to\infty} \frac{1}{n} \left(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}\right) = 0$.
 - c) If $a, b \in \mathbb{R}$ and $0 \le a b < \varepsilon$ holds for every positive ε , then prove that a = b.
 - d) Show that the sequence $\{(-1)^n\}$ does not converges.
 - e) Give an example to show that intersection of an infinite number of neighbourhoods of a point may not be a neighbourhood of that point.

[Turn Over]

- f) Give an example of a set with only $\sqrt{2}$ as a limit point.
- g) State Bolzano Weierstrass theorem for an infinite subset of $\mathbb R$.
- h) State Cauchy's condensation test for the series.
- i) Give an example of a set $S \subseteq \mathbb{R}$ such that S is neither open nor closed in \mathbb{R} .
- Prove or disprove that the every finite set is open.
- k) Give an example of a sequence of irrational numbers that converges to a rational number.
- 1) If c is a constant and $\sum a_n$, converges to a, then show that $\sum ca_n$ converges to ca.
- m) Find $\sup \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}$ and $\inf \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}$.
- n) If $\{a_n\}$ is a bounded sequence, then show that $\overline{\lim}_{n\to\infty} (-a_n) = -\underline{\lim}_{n\to\infty} a_n.$
- o) Prove that the series $\sum_{n=1}^{\infty} U_n$, where $U_n = \frac{n}{n+1}$ is divergent.

- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Give an example of an ordered field which does not have the supremum property (completeness). Justify.
 - b) If $\sum a_n^2$ and $\sum b_n^2$ are both convergent series, prove that the series $\sum a_n b_n$ is also convergent.
 - c) Give an example of a sequence which is bounded below but unbounded above.
 - d) Show that for any real number x, there exist a unique integer m such that $m \le x < m+1$.
 - e) Prove that

$$\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^{v} + 1}} + \frac{1}{\sqrt{n^{v} + 2}} + \dots + \frac{1}{\sqrt{n^{v} + n}} \right] = 1.$$

- f) Prove that every bounded sequence in R contains a convergent subsequence.
- g) Show that the series

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots$$
, is convergent and find the sum of the series.

h) Define conditionally convergent series with example.

3. Answer any **two** questions:

 $5 \times 2 = 10$

5

- a) i) Prove that the set of all, positive rational numbers is countable.
 - ii) Show that Cauchy's root test establishes the convergence of the series $\sum_{n=1}^{4} 3^{-n-(-1)^n}$ while D'Alembert's ratio test fails to do so.
- b) Prove that the sets

S =
$$\{x \in \mathbb{R} : 2x^2 - 5x + 2 < 0\}$$
 and
T = $\{x \in \mathbb{R} : 2x^2 - 5x + 2 > 0\}$

are open in \mathbb{R} .

-) i) Use Leibnitz test to show that $\sum_{n=1}^{4} \frac{(-1)^n (n+5)}{n(n+1)}$ is convergent.
 - ii) Find the derived set of

$$S = \left\{ m + \frac{1}{n}; m \in N, n \in N \right\}.$$
 3+2

- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) If A is countable and B is countable then prove that $A \cup B$ is countable.

- ii) If $\{a_n\}$ is a null sequence and $\{b_n\}$ is a bounded sequence, then show that $\{a_nb_n\}$ is a null sequence.
- iii) Give an example of a sequence $\{a_n\}$ which is not bounded but for which $\lim_{n\to\infty} \frac{a_n}{n} = 0.$ 5+3+2
- b) i) Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{5}, x_{n+1} = \sqrt{5 + x_n}$ for all $n \ge 1$, converges to the positive root of the equation $x^2 x 5 = 0$.
 - ii) State Cauchy's general principle of convergence to show that the sequence $\{x_n\}$ where $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots \frac{1}{n}$ is divergent.
- c) i) Examine the convergence of the series $x + \frac{x^2}{2} + \frac{x^3}{3} + ..., x > 0$ 3
 - ii) Prove that every absolutely convergent series is convergent. 2

iii) Test the convergence of the series

$$1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1.3}{2.4} \cdot \frac{1}{5} + \frac{1.3.5}{2.4.6} \cdot \frac{1}{7} + \dots$$

5

.....