U.G. 5th Semester Examination - 2021 MATHEMATICS

Course Code: BMTMCCHT 501

Course Title: Algebra-III

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Consider the group $(\mathbb{Z},+)$. Let $f:\mathbb{Z} \to \mathbb{Z}$ be defined by f(n)=n+1. Is this mapping a group homomorphism?
 - b) Show that for a group homomorphism $f:G \to G_1$, $f(e)=e_1$ where e and e_1 are the identity elements of G and G_1 respectively.
 - c) Find the correct answer:
 The number of group homomorphisms from the cyclic group \mathbb{Z}_6 to the cyclic group \mathbb{Z}_9 is
 - i) 6

ii) 9

iii) 3

iv) 1

[Turn Over]

- d) Give an example of an infinite non-cyclic group.
- e) " $\mathbb{Z}/_{29\mathbb{Z}}$ is an integral domain". Is it true? Justify.
- f) Write down the assoiciated martix of the real quadratic form in three variables

$$x^2 - 2y^2 + 5z^2 - 2xy + 4yz - 16xz$$
.

- g) Prove that the subgroup z(G), the centre of a group G is normal in G.
- h) Which of the following is not a field?

ii) IR

iii) $\mathbb{Z}[i]$

- iv) C
- i) Why the rings \mathbb{Z} and $2\mathbb{Z}$ are not isomorphic?
- j) When an eigenvalue of a square matrix of order n is called regular?
- k) Find a maximal ideal in the ring \mathbb{Z}_6 .
- 1) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be given by T(x, y) = (x, y, xy) for all $(x, y) \in \mathbb{R}^2$. Is T a linear transformation? Give reason.
- m) Prove that $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not a cyclic group.
- n) If $\varphi: G \to G^1$ be a group homomorphism with $\operatorname{Ker} \varphi = \{e\}$. Prove that φ is injective.

592/Math.

- o) Prove or disprove : If (-1) is an eigen value of an $n \times n$ matrix A, then det $(A^2-I_n)=0$.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Let G be a non-commutative group of order 10. Then show that G has a trival centre.
 - b) Show that the ideal $7\mathbb{Z}$ in the ring \mathbb{Z} is a prime ideal.
 - Consider the ring C[a, b] of all real valued continuous functions defined on [a, b]. Show that for any $c \in [a,b]$, the set $\{f \in C[a,b]: f(c)=0\}$ is a maximal ideal of c[a,b].
 - d) Show that the matrix $\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$ is not diagonalisable.
 - e) Let $\langle V, \langle ... \rangle \rangle$ be an inner product space and $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$. Then show that y = z.
 - f) Is there a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$. Such that T(1, -1, 1) = (1, 0) and T(1, 1, 1) = (0, 1)? Explain your answer.
 - g) In the ring \mathbb{Z} , prove tht the ideal $p\mathbb{Z}$ is a prime ideal if p is a prime number.

- h) If G is an infinite cyclic group, prove that Aut(G) is a group of order 2.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) i) Let G be a group in which $(ab)^3 = a^3b^3$ for all $a, b \in G$. Then prove that $H = \{x^3 : x \in G\}$ is a normal subgroup of G.
 - ii) Is the ideal $I = \left\{ f \in C \left[0,1 \right] \colon f \left(0 \right) = f \left(1 \right) = 0 \right\} \qquad a$ maximal ideal in the ring C[0, 1]? 3 + 2 = 5
 - b) i) Let T be the linear operator on \mathbb{R}^3 defined by T(x,y,z) = (3x,x-y,2x+y+z). Is T invertible? If so, find a rule of T^{-1} .
 - ii) If x and y be two orthogonal vectors in a Euclidean space V then prove that $\|x + y\|^2 = \|x\|^2 + \|y\|^2.$ 3+2=5
 - c) Suppose V be a finite dimensional vector space over a field F and $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be an ordered basis of V. Let $T: V \rightarrow V$ be a linear operator such that

$$T(\alpha_1) = \alpha_2, T(\alpha_2) = \alpha_3, ..., T(\alpha_{n-1}) = \alpha_n,$$

 $T(\alpha_n) = \alpha_1.$

Prove that $T^n = I$, where I is the identity mapping of V.

If λ be an eigen value of an n×n idempotent matrix A, prove that λ is either 1 or 0.

$$4+1=5$$

- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) If H is the only subgroup of order n in a group G then prove that H is a normal subgroup of G.
 - ii) State and prove second isomorphism theorem of groups. 4+(2+4)=10
 - b) i) Is there any integral domain which has six elements?
 - ii) Prove that the fields \mathbb{R} and \mathbb{C} are not isomorphic.
 - Suppose F is a field and there is a ring homomorphism from \mathbb{Z} onto F. Show that $F \simeq \mathbb{Z}_p$ for some prime number p. 3+3+4=10

- c) i) If G and G' be two group and $\phi: G \to G'$ be an onto homomorphism, prove that the quotient group $G/\ker \phi$ is isomorphic to G'.
 - ii) Find the permutation group isomorphic to Klein's 4-group.
 - iii) Prove that the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x+y, y+z, z+x), (x, y, z) \in \mathbb{R}^3$ is one to one and onto.