## 593/Math. SKBU/UG/5th Sem/Math/HT502/21

## U.G. 5th Semester Examination - 2021 MATHEMATICS

**Course Code: BMTMCCHT 502** 

**Course Title: Metric Spaces and Complex Analysis** 

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions:  $1 \times 10 = 10$ 
  - a) Find the interior of the set [a, b] a,  $b \in \mathbb{R}$  with respect to  $\mathbb{R}$  with discrete metric.
  - b) What is the smallest closed set containing R-Q in R with respect to usual metric?
  - c) Give an example of a proper open dense subset of IR with respect to usual metric.
  - d) Find he diameter in  $\mathbb{N}$  with respect to  $\mathbb{R}$  with discrete metric.
  - e) Let  $\{F_n \mid n \in \mathbb{N}\}$  be a nested sequence of nonempty sets in a metric space with diam

- $(F_n) \rightarrow 0$  as  $n \rightarrow \infty$ . Is  $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$ ? Justify.
- f) Does there exist an analytic function of  $\mathbb{C}$  with real part  $u(x, y) = y^2$ ? Justify.
- g) Show that  $f(z) = z, \forall z \in \mathbb{C}$  is conformal on  $\mathbb{C}$ .
- h) Show that  $\lim_{z\to 0} \frac{\operatorname{Re}(z)}{z}$  does not exist.
- i) If  $A = \{(x,y): x^2 + y^2 = 1\}$  and  $B = \{(x,y): (x-2)^2 + y^2 = 2\}$ . Find diam  $(A \cup B)$  with rspect to the usual metric on  $\mathbb{R}^2$ .
- j) Let  $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$  be the unit circle in  $\mathbb{R}^2$ . Is  $S^1$  closed? Explain.
- k) When two metrices are said to be equivallent?
- 1) Prove that isometry is an one-to-one map.
- m) Let a function f be differentiable at  $z_0 \in \mathbb{C}$ . Prove that the function f is continuous at  $z_0$ .
- n) Find the fixed points of the bilinear transformation  $\omega = \frac{3z-4}{z-1}$ .

- o) Find the radius of convergence of the power  $\operatorname{series} \ \sum \left(\frac{n+r}{n}\right)^{n^2} z^n.$
- 2. Answer any **five** questions:  $2 \times 5 = 10$ 
  - a) Show that  $d(x,y) = |x^4 y^4|, \forall x, y \in \mathbb{R}$  is not a metric on  $\mathbb{R}$ .
  - b) Find the diameter of the set  $\left\{ (x,y) : 0 < x < 1, y = e^x \right\} \text{ with respect to } \mathbb{R}^2$  with usual metric.
  - c) Draw the closed ball centre at (0, 0) radius 1 with respect to  $\mathbb{R}^2$  with metric,  $d((x_1, y_1), (x_2, y_2)) = \max\{|x_1 x_2|, |y_1 y_2|\},$   $\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2.$
  - d) Show that  $f(z) = Re(z), \forall z \in \mathbb{C}$  is nowhere differentiable but everywhere continuous on  $\mathbb{C}$ .
  - e) Show that Cantor's intersection theorem does not hold for the family of open intervals.
  - f) Three complex numbers  $z_1$ ,  $z_2$ ,  $z_3$  are such that  $z_1 + z_2 + z_3 = 0$  and  $|z_1| = |z_2| = |z_3|$ . Prove that they represent the vertices of and equilateral triangle.

- g) Show that w = iz + i maps half plane x>0 into half plane y > 1.
- h) Show that the function  $f(z) = \overline{z}$  is non-analytic everywhere in  $\mathbb{C}$ .
- 3. Answer any **two** questions:  $5 \times 2 = 10$ 
  - a) Let (Y,d') be a subspace of a metric space (X, d). Then prove that a set ACY is open in (Y,d') if and only if there exists an open set G in (X, d) such that A = G∩Y.
    5
  - b) i) Prove that if a power series  $\sum a_n z^n$  converges when  $z = z_1 (\neq 0)$ , then it is absolutely convergent for every value of z such that  $|z| < |z_1|$ .
    - ii) Find the radius of convergence of power series

$$\sum_{n=1}^{\infty} a_n z^n \text{ where } a_n \begin{cases} 0, \text{ if n is even} \\ n, \text{ if n is odd} \end{cases}$$

$$3+2=5$$

c) Prove that every separable metric space is second countable.

- 4. Answer any **one** question:  $10 \times 1 = 10$ 
  - a) i) Show that a subset Y of a complete metric space (X, d) is complete if and only if Y is closed in (X, d).
    - ii) Show that  $\mathbb{N}$  is complete with respect to usual metric on  $\mathbb{R}$ .
    - iii) Find a bilinear transformation which maps z = 0, -i, -1 into w = i, 1, 0 respectively. 4+2+4=10
  - b) i) Prove that continuous image of a connected set is connected.
    - ii) Express the relation  $\omega = \frac{13iz + 75}{3z + 5i}$  in the form  $\frac{\omega a}{\omega b} = k \cdot \frac{z a}{z b}$  where a, b, k are constants. Show that the circle in the z-plane whose centre is z=0 and radious 6 transformed into th circle in the w-plane on the line joining w=a and w=b as diameter, and the points in the z-plane which are exterior to the former circle

are transformed into the points in the

w-plane within the latter circle.

$$5+(1+2+2)=10$$

- c) i) Show that the diagonal  $\{(x,x):x \in X\}$  is closed in the product metric space  $X \times X$ .
  - ii) Let (X, d) be a metric space without any isolated point and Y be a dense subset of X. Show that for any nonempty open set U of X,  $U \cap Y$  is infinite.
  - iii) Find the analytic function w = u + iv, where  $u = e^{-x} \left\{ \left( x^2 y^2 \right) \cos y + 2 x y \sin y \right\}$ . 3 + 3 + 4 = 10

\_\_\_\_\_