U.G. 3rd Semester Examination - 2021 MATHEMATICS

Course Code: BMTMCCHT302

Course Title : Algebra-II

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and Symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) Examine whether the operation * on Q defined by a*b = ab + 1, is commutative.
 - b) Define order of an element in a group.
 - c) Is the symmetric group S₃ abelian? Justify.
 - d) Give an example of a finite non-commutative ring with unity.
 - e) What do you mean by divison of zero in a ring?
 - f) Give an example of a group (G, *) in which $0(a).0(b) \neq 0(a*b)$ for some $a, b \in G$.

- g) Find the centraliser of (12) in the symmetric group S_3 .
- h) If $\alpha = (2, 5, 3)(4, 7, 8, 1)$ is an element of S_8 , find the order of α .
- i) Give an example of an infinite group, each element of which is of finite order.
- j) State Lagrange's theorem.
- k) Find the number of generators of the group $(\mathbb{Z}_5, +)$.
- l) Define characteristic of a ring.
- m) Is the dihedral group D₄ cyclic? Justify.
- n) Can a non-abelian group have an abelian subgroup? Give proper reason.
- o) Give an example of a finite ring R with unity 1_R and a subring S of R containing no unity.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Prove that a cyclic group of prime order has no non-trivial proper subgroup.
 - b) Find all cyclic subgroups of the symmetric group S_3 .
 - c) If each element in a group be its own inverse, prove that the group is abelian.

- d) Write down all symmetries of a square.
- e) In the symmetric group S_3 , find two subgroups H and K such that $H \cup K$ is not a subgroup of S_3 .
- f) If G be an abelian group, show that the subset $H = \left\{ a \in G \mid a = a^{-1} \right\} \text{ forms a subgroup of G.}$
- g) Is the set $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) : a + c = b + d \right\}$ a subring of the ring $M_2(\mathbb{R})$ of all 2×2 real matrices? Justify your answer.
- h) If R be a ring with unity having no divisor of zero, prove that 0 and 1 are the only idempotents in R.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) i) Prove that a group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$, for all $a, b \in G$.
 - ii) Find all elements of order 5 in the group $(\mathbb{Z}_{30}, +)$. 3+2
 - b) i) Prove that the characteristic of an integral domain is either zero or a prime number.
 - ii) Let a be a fixed element in a ring R.

- Define $c(a) = \{x \in R : xa = ax\}$. Prove that c(a) is a subring of R. 3+2=5
- c) Prove that a finite integral domain is a field. Give an example of an infinite integral domain which is not a field.
- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Let a be an element of a group G. Prove that $o(a) = o(a^{-1})$.
 - ii) Let H and K be subgroups of a group G. Prove that HK is a subgroup if and only if HK=KH.
 - iii) If G be an abelian group of order 10 containing an element of order 5, show that G is cyclic. 3+5+2
 - b) i) Prove that every subgroup of a cyclic group is cyclic.
 - 12 and H=<a⁴> be a cyclic group of order 12 and H=<a⁴> be a subgroup of G. Show that the distinct left cosets H in G are H, aH, a²H and a³H.
 - iii) Show that every proper subgroup of a group of order 6 is cyclic. 5+3+2

- c) i) Prove that the ring $(\mathbb{Z}_n, +, .)$ is an integral domain if and only if n is a prime number.
 - ii) Show that in a ring R cancellation laws hold if and only if R has no divisor of zero.
 - iii) Find all units in the ring $(\mathbb{Z}_{10}, +, .)$.

5+3+2
